IQSS The Institute for Quantitative Social Science

Introduction to Python

Python & Statistics Bootcamp

NalLette M. Brodnax

The Institute for Quantitative Social Science
Harvard University

June 4, 2018



Set up

¢ Install Python 3.6 (Anaconda) from
https://www.anaconda.com/download

* Access materials at
https://nmbrodnax.github.io/python-stats

/23 .


https://www.anaconda.com/download
https://nmbrodnax.github.io/python-stats

My goals

 Demystify programming
 Introduce useful features

* Provide opportunities to practice

3/23.



Introduction

Introduction 4/23.



What is Python?

Python is a general purpose programming language. It is easy
to learn, highly readable, powerful, and flexible.

Introduction

5/23



What is Python?

Python is a general purpose programming language. It is easy
to learn, highly readable, powerful, and flexible.

Applications
* Data collection
* Data wrangling
¢ Analysis
* Visualization

* Automation

Introduction



Getting set up

Getting set up 6/23.



Command line interface

MacOS X or Linux —Terminal, Bash
Windows —Putty, Powershell

Features
* Interact with computer’s operating system

* Manage Python installation
* Access Python interpreter

¢ Execute commands

Getting set up



Gathering the tools

Interpreter —Output
Text Editor + Interpreter —Output

Command Line + Text Editor + Interpreter —Output

l

Integrated Development Environment (IDE) —Output

Launch the Spyder IDE!

Getting set up

23.



Jupyter notebooks

Web application that mixes prose with chunks of executable
code

+ Useful for exploration and documentation

* Can be configured for multiple programming languages

Getting set up

9/23.



Try Python

Use the Python interpreter:
print("Hello, world.")

Use the text editor:
print("Hello, world.")

Save this as a new script called hello.py

Getting set up 10/23.



Programming Basics

Programming Basics 11/23.



Programming language features

Data types
Conditionals
Loops

Functions and methods

ok =

Modules and packages

Programming Basics 12/23.



Data types

Categories for storing different kinds of information in
memory

+ Examples include integers, floats, and strings
* Form the basis of language syntax and grammar

* Help to allocate computing resources efficiently

Programming Basics 13/23.



Operating on data types

Assignment

assignment

add and assign

movie = 'Rogue One'
print(movie)

i=1

i+=1

print(i)

Programming Basics

14/23



Operating on data types

Assignment
. _ movie = 'Rogue One'
assignment = . ]
print(movie)
i=1
add and assign += i+=1
print(i)
String
concatenate + print('A' + 'B')
repeat * print('me'*3)

Programming Basics

14/23



Operating on data types

Assignment
. _ movie = 'Rogue One'
assignment = . ]
print(movie)
i=1
add and assign += i+=1
print(i)
String
concatenate + print('A' + 'B')
repeat * print('me'*3)

Comparison

print('a' == 'a')
equal/not equal == != print('a' == 1)
print(5 != 25/5)

greater/less > <
greater/less/equal >= <=

Programming Basics 14/23.



Data types: sequences

string — ordered sequence of characters

mystring = 'happy'

Programming Basics 15/23



Data types: sequences

string — ordered sequence of characters
mystring = 'happy'
list — ordered sequence of items

mylist = ['Leia', 'Rey', 'Maz']

Programming Basics 15/23



Data types: sequences

string — ordered sequence of characters

mystring = 'happy'

list — ordered sequence of items

mylist = ['Leia', 'Rey', 'Maz']

dictionary — unordered sequence of key-value pairs

mydict = {'name': 'Kylo', 'side': 'dark'}

Programming Basics 15/23.



Referencing sequences

With an ordered sequences, such as a string or list, reference
by index number, starting with zero

mystring = 'happy'
print(mystring[0])
print (mystring[2:4])

mylist = ['Leia', 'Rey', 'Maz']
print(mylist[-1])

Programming Basics 16/23



Referencing sequences

With an ordered sequences, such as a string or list, reference
by index number, starting with zero

mystring = 'happy'
print(mystring[0])
print (mystring[2:4])

mylist = ['Leia', 'Rey', 'Maz']
print(mylist[-1])

With a dictionary, reference by key

mydict = {'name': 'Kylo', 'side': 'dark'}
print(mydict['name'])

Programming Basics 16/23 .



Conditionals

Control structures that allow decision making
name = 'Grace Hopper'
if len(name) < 20:

print('Yes')

else:
print('No')

Programming Basics

17/23



Conditionals

Control structures that allow decision making
name = 'Grace Hopper'
if len(name) < 20:

print('Yes')

else:
print('No')

Four-space indentation tells Python what to execute if the
condition is true

Programming Basics 17/23.



Loops

Control structures that allow repeated behavior
* for — repeats commands for a finite number of iterations

* while - evaluates a conditional statement and repeats
commands while the condition is true

Programming Basics

18/23.



Loops

for loop
i=0
for letter in name:
if letter in ['a', 'e', 'i'
i=1i+1
print(name + ' has ' + str(i) + ' vowels.')

Programming Basics

19/23



Loops

for loop
i=0
for letter in name:
if letter in ['a', 'e', 'i', 'o', 'u'l]:
i=1i+1
print(name + ' has ' + str(i) + ' vowels.')

while loop

i=0
vowel count = 0
while i < len(name):

if name[i] in ['a', 'e', 'i', 'o', 'u']:
vowel count = vowel count + 1
i=1i+1

print(name + ' has ' + str(vowel_count) + ' vowels.')

Programming Basics 19/23



Loops

for loop
i=20
for letter in name:
if letter in ['a', 'e', 'i', 'o', 'u'l]:
i=1i+1
print(name + ' has ' + str(i) + ' vowels.')
while loop
i=20
vowel count = 0
while i < len(name):
if name[i] in ['a', 'e', 'i', 'o', 'u']:
vowel count = vowel count + 1
i=1+1
print(name + ' has ' + str(vowel_count) + ' vowels.')

Q: Why do we use the str () function in each loop?

Programming Basics 19/23.



Functions and methods

function — named block of code that can accept any number
of arguments

my_string = 'aBcDe'
print (my_string)

Programming Basics 20/23



Functions and methods

function — named block of code that can accept any number
of arguments

my_string = 'aBcDe'
print (my_string)

method - a function with a built-in argument for the object
being acted on

print(my_string.lower())

Programming Basics 20/23



Functions and methods

function — named block of code that can accept any number
of arguments

my_string = 'aBcDe'
print (my_string)

method - a function with a built-in argument for the object
being acted on

print(my_string.lower())
user-defined functions

def say_hello(name_string):
print('Hello, ' + str(name_string) + '!"')
return None

say_hello('NaLette')

Programming Basics 20/23.



Modules

File containing Python definitions and statements and ending

in .py
Module Description
datetime basic date and time types
csv reading from and writing to CSV files
re regular expression operations
os miscellaneous operating system tools

random pseudo-random number generation

Programming Basics 21/23.



Packages

Type of module that has a folder of submodules and tools to
manage them

Package Description
numpy array processing and advanced math
pandas high-performance data structures
scipy algorithms and mathematical tools

scikit-learn data mining and analysis
matplotlib publication-quality figures

Programming Basics 22/23.



Questions?

Programming Basics 23/23.



	Introduction
	Getting set up
	Programming Basics

